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1 Original discretization in the CE-QUAL-ICM code

The fundamental equation solved by the CE-QUAL-ICM code is the conservation

of mass equation, written for each constituent convected by a ow:
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where:

� C - concentration of a constituent (gm m�3)

� t; xi - temporal and spatial coordinates (x1 = x, x2 = y, x3 = z)

� v = [vx; vy; vz] - uid velocity (m sec�1)

� D - di�usion coe�cient (m2sec�1)

� s - external loads, sources and sinks (gm m�3sec�1)

The domain is a reservoir with the surface, the bottom and vertical boundaries per-

pendicular to x and y directions. The boundary conditions consist of the Neumann

no-ow conditions on the surface and the bottom of the ow domain, and Dirichlet

conditions on vertical boundaries.

In CE-QUAL-ICM the ow domain is divided into hexahedral control volumes

(cells). It is assumed that cell faces are perpendicular to coordinate axes, but vol-

umes do not necessarily form a regular structured mesh. Each cell is characterized

by its volume and linear dimensions in each coordinate direction, and is limited by

faces having speci�ed area. Neither the cell volume nor the areas of cell faces can

be, in general, computed using linear dimensions. It is assumed that the consis-

tency of the whole speci�cation of the mesh is guaranteed by programs supplying
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CE-QUAL-ICM with geometry and ow data. The adopted model allows for more

exible treatment of the geometry of the ow domain (like changing elevation of the

surface), but creates a certain arbitrariness in designing discretization formulas.

Time discretization is done using a splitting into two equations, the �rst for the

horizontal ow and the second for the vertical ow. The horizontal step uses explicit

time integration, while an implicit scheme leads to a system of linear equations in

the vertical step.

In the actual computations the following values are assumed to be given at

each time step: volumetric ows across faces, Qk, and face areas, Ak; and di�usion

coe�cients on faces, Dk. Volumes, Vj, are speci�ed initially and then updated

using values of volumetric ows across faces (volumes of surface cells can be read

directly from input �les to allow for changing surface elevation). For each time step,

sources, Sj, are computed by the program and the length �tn is determined based

on CFL (Courant, Friedrichs and Lewy) number considerations. Concentrations

within volumes are the primary unknowns of the discretization. Concentrations on

faces, as well as gradients of concentrations on faces, are computed using the values

within cells and the linear dimensions of cells.

2 Discontinuous Galerkin formulation

To derive a discontinuous Galerkin formulation [1, 2] for equation (1) the original

CE-QUAL-ICM division of the computational domain 
 into hexahedral volumes Vj

is assumed. The vertical boundaries of 
 form Dirichlet boundaries �D, composed of
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two parts: inow ��, and outow �+. Horizontal boundaries are Neumann no-ow

boundaries. Boundaries between cells form the internal boundary, denoted by �int.

For an inter-cell boundary, �ef , between two volumes Ve and Vf , jump and average

operators are de�ned:

[v] = vj@Ve��ef � vj@Vf��ef

<v>= 0:5 � (vj@Ve��ef + vj@Vf��ef )

The Baumann-Oden formulation of the discontinuous Galerkin method applied

to equation (1) gives the following variational problem:

Find Ch 2 P 1
h such that for every test function w 2 P 1

hthe following holds:
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where:

� P 1
h - the space of cell-wise linear functions

� vn - ow velocity normal to the ow face, vn = v �n

� @
@n

- derivative normal to the ow face, @
@n

= r �n

� �C - value of concentration on the upwind side of a face
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� CD - values speci�ed on the vertical (Dirichlet) boundaries

Since cell faces are perpendicular to coordinate axes, the same splitting into

horizontal and vertical ow as is used in the original CE-QUAL-ICM discretization

can easily be performed. The integration for the horizontal ow problem extends

only over vertical faces, while for the vertical ow only over horizontal faces. To

keep in accordance with the discretization of CE-QUAL-ICM, the horizontal ow

problem is discretized using an explicit method and the vertical ow problem using

an implicit scheme.

The horizontal ow problem is solved �rst. Since the simplest explicit method,

the forward Euler scheme, is unconditionally unstable for linear discontinuousGalerkin

approximations [3], the second order Runge-Kutta algorithm is applied to the hor-

izontal ow problem. This brings the advantage of the increased time accuracy

to match the higher order accuracy of the discontinuous Galerkin approximation.

The space discretization uses piecewise linear functions with the exact integration

of terms appearing in the formulation (2).

2.1 Slope limiting

With the suitable time step restriction

�t � 0:5min
j
(
lx

vj
;
ly

vy
)

(minimum is taken over both directions and all volumes) the time integration scheme

is total variation diminishing (TVD) for the average values within cells. Still, there

may appear oscillations for higher order linear degrees of freedom. To stabilize
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these oscillations a minmod limiter has been implemented in the code [3]. The time

integration scheme with slope limiting is total variation diminishing for time steps

�t �
1

3
min
j
(
lx

vj
;
ly

vy
)

and arbitrary Dirichlet boundary conditions.

3 Implementation

The discontinuous Galerkin approximation is implemented to minimize the changes

introduced to the original CE-QUAL-ICM code. Only the parts of the code directly

related to horizontal transport have been modi�ed. This includes initialization of

variables, calculations of auxiliary geometric quantities and time step length com-

putation. Each modi�cation done to the original CE-QUAL-ICM code is explicitly

delimited by the lines

CDGbegin KB - added Discontinuous Galerkin transport scheme

and

CDGend KB - added Discontinuous Galerkin transport scheme

New arrays for additional degrees of freedom CX and CY, as well as volume updates

DTCX and DTCY, are declared in the include �le wqm com.inc. It was assumed that

memory savings are less important than code e�ciency, and several auxiliary arrays

have been declared in the wqminit com.inc �le. In the same �le there are logical

variables DG and DGSL for two types of discontinuous Galerkin discretization, the

�rst without and the second with slope limiting. All variables in the included �les

are made global through de�nitions of appropriate common blocks.
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At the current stage the discontinuous Galerkin approximation is implemented

only for the horizontal ow problem. The ow of computations is controlled by the

values of variables DG and DGSL. If one of them is TRUE the code updates the unknown

degrees of freedom using the scheme described above. The time-step length chosen

for the discontinuousGalerkin approximation is half of that used for the QUICKEST

algorithm. If the DGSL option is speci�ed, slope limiting is applied after two sweeps

of the Runge-Kutta algorithm.

It is assumed that the solution to the vertical problem is done by the original

CE-QUAL-ICM algorithm using the average values of concentrations within cells.

4 Running CE-QUAL-ICM with the discontinuous Galerkin

approximation

The only change in the input �le necessary to run the CE-QUAL-ICM code with the

discontinuousGalerkin approximation is the speci�cation of the approximation type

DG or DGSL instead of the existing UPWIND or QUICKEST types. The DG algorithm provides

more accurate but less stable approximations, and the DGSL algorithm eliminates

unwanted oscillations in the solution. If the chosen time-step limit turns out to be

insu�cient to guarantee stability, changing the parameter DLTFTN to 0.6 should make

the scheme stable, even for di�cult boundary conditions.
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